Prestressed concrete

/ / General Blog

Prestressed concrete is a method for overcoming concrete’s natural weakness in tension. It can be used to produce beams, floors or bridges with a longer span than is practical with ordinary reinforced concrete. Prestressing tendons (generally of high tensile steel cable or rods) are used to provide a clamping load which produces a compressive stress that balances the tensile stress that the concrete compression member would otherwise experience due to a bending load. Traditional reinforced concrete is based on the use of steel reinforcement bars, rebars, inside poured concrete. Prestressing can be accomplished in three ways: pre-tensioned concrete, and bonded or unbonded post-tensioned concrete.

Pre-tensioned concrete is cast around steel tendons—cables or bars—while they are under tension. The concrete bonds to the tendons as it cures, and when the tension is released it is transferred to the concrete as compression by static friction. Tension subsequently imposed on the concrete is transferred directly to the tendons.

Pre-tensioning requires strong, stable anchoring points between which the tendons are to be stretched. Thus, most pre-tensioned concrete elements are prefabricated and transported to the construction site, which may limit their size. Pre-tensioned elements may be incorporated into beams, balconies, lintels, floor slabs or piles. An innovative bridge design pre-stressing is the stressed ribbon bridge.

Bonded post-tensioned concrete is the descriptive term for a method of applying compression after pouring concrete and the curing process (in situ). The concrete is cast around a plastic, steel or aluminium curved duct, to follow the area where otherwise tension would occur in the concrete element.

A set of tendons are fished through the duct and the concrete is poured. Once the concrete has hardened, the tendons are tensioned by hydraulic jacks that react (push) against the concrete member itself.

Unbonded post-tensioned concrete differs from bonded post-tensioning by providing each individual cable permanent freedom of movement relative to the concrete. To achieve this, each individual tendon is coated with a grease (generally lithium based) and covered by a plastic sheathing formed in an extrusion process. The transfer of tension to the concrete is achieved by the steel cable acting against steel anchors embedded in the perimeter of the slab. The main disadvantage over bonded post-tensioning is the fact that a cable can destress itself and burst out of the slab if damaged (such as during repair on the slab). The advantages of this system over bonded post-tensioning are:

  • The ability to individually adjust cables based on poor field conditions (For example: shifting a group of 4 cables around an opening by placing 2 on each side).
  • The procedure of post-stress grouting is eliminated.
  • The ability to de-stress the tendons before attempting repair work.

Source: http://en.wikipedia.org/wiki/Prestressed_concrete

Leave a Reply

Your email address will not be published. Required fields are marked *